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M A S S  M I N I M I Z A T I O N  F O R  A S P H E R I C A L  S C R E E N  W I T H  A S P E C I F I E D  

L E V E L  O F  T R A N S M I T T E D  W A V E  E N E R G Y  

V.  V .  Alekhin  UDC 539.3 

A layered spherical screen with minimum weight exposed to a spherical wave is synthesized 
from a finite set of elastic homogeneous isotropic materials under constraints imposed on the 
wave energy transferred through the screen and the screen thickness. The necessary optimality 
conditions are obtained and an example of calculation of the optimal structure is given. 

1. F o r m u l a t i o n  o f  t h e  Problem.  Problems of the optimal design of plane layered structures 
subjected to wave actions are dealt with in a number of papers (see, e.g., [1-3]). We consider the following 
problem. Let Wbe a set of k homogeneous isotropic materials. From the given set, it is required to synthesize 
a layered spherical screen with minimum weight under specified constraints on the wave energy and thickness 
of the screen. 

In the case of central symmetry, the stress-strain state of a layered medium is described in the spherical 
coordinates (r, 8, ~) by the equation of motion 

Oa~r 2 02ur 
0--7- + -r (Crr~ - ~r~) = p 0t 2 (1.1) 

and the Hooke's law 

Our Ur ~ OUr Ur (1.2) 
= + 2p(cy  -- 2 c D  --r ' = p(c  -- 2c;)-3  + 2p(c  --  7 "  

Here ur(r,t)  is the radial displacement, arr(r , t)  and c ~ ( r , t )  are the radial and circumferential stresses, 
respectively, ct (r) and ct (r) are parameters of the medium that  are expressed in terms of Young's modulus 
E(r ) ,  Poisson's ratio v(r), and the density p(r) of the layer materials by the formulas 

E(1 - .) E 

c[ = p(1 + ~,)(1 - 2v) '  c2 = 2p(1 + v)" 

Let ri and r2 be the inner and outer radii of the layered screen, respectively. From a point source 
located in the coordinate origin, a spherical wave containing the entire frequency spectrum is incident on the 
internal boundary of the screen ri (see Fig. 1). 

For media whose parameters are independent of time, one can use a spectral representation with respect 
to t ime [4] to reduce the number of independent variables in Eq. (1.1) and formulate the initial problem in 
terms of the spectral densities of the radial velocity vr(r, w) = -iWur(r,  w) and the radial s t r e s s  o'rr(r , w) .  

On the external and internal boundaries of the screen layers ri E It1, r2], where the acoustic properties 
of the layer materials and ambient medium undergo jumps, it is necessary to specify the following conjugation 
conditions [continuity of the velocity vr(r,~v) and stress ~rrr(r, w)]: 

[vr(ri, ~)] = = 0. (1.3) 
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Fig. 1 

W'e derive the boundary  conditions for system (1.1), (1.2). For convenience, we consider this sys tem 

not  on the entire r axis but  on the segment [rl,r2] occupied by the layered screen. The  effect of the regions 

r < r l  and r > r2 is taken into account by the boundary  conditions for r = r l  and  r = r2. 

We consider the internal region r < r l  occupied by  a medium with acoustic propert ies Pa, Cla, and cta. 
Let  a monochromat ic  spherical wave with the potential  

~21 = [bl (w)/r] exp[iw(r/cla - t)] 

e m a n a t e  from a source located at the coordinate origin and be incident on the screen. A reflected wave with 

the  potent ia l  

~1 = [bl (w) /r] exp[i~(r/cl~ - t)] 

occurs  in the region r < r l .  In this case, the solution of  system (1.1), (1.2) on the  boundary r = r l  can be 

wr i t t en  as 

�9 iwrl 
Vr(r l '~)  = b l ( w ) ( ~  + r l~:a)exp  ( iWrl  ~ +b2(w)(ir~ i x  cza / r ~ a ) e X p ( -  c-~a / ' 

1 i,,, 

el a 1" 

The ampli tude bl (w) of  the incident-wave potent ia l  is expressed in terms of  the  parameters  of this wave. 

T h e  unknown ampli tude b2(w) of the reflected wave can be  eliminated from (1.4). After  simple manipulations,  

we obta in  

gllVr(rl,~d) Jr g l2arr(r l ,  W) = 913, (1.5) 

where  g u  = PaCla~Z2r~ - 4paC~a(Cla + iwrl),  g12 = iwrlcla - w2r 2, and g13 = 2bl (w)parlw 4 exp (iwrl/cla). 
The  coefficients gij in (1.5) depend on the propert ies  of the medium tha t  occupies the region r < r l  

and  on the incident-wave parameters .  
The  external region r > r2 occupied by a med ium with the acoustic proper t ies  Pb, Clb, and Ctb is 

considered in a similar manner .  In this region, just one t ransmi t ted  refracted wave propagates. El iminat ing 
the  unknown ampli tude of the refracted-wave potential  f rom the solution of sy s t em (1.1), (1.2) in the region 

r > r2, we obtain the following boundary  condition on the  boundary  r -- r2: 

+ = 0. (1 .6)  

Here  921 ----- Pbr w2r2 -- 4pb4b(Clb -- icor2) and g22 ---- iwr2Clb Jr w2r 2. 

956 



Thus, in the case of the incident spherical wave, the parameters of the wave process, i.e., the velocity 
and stress distributions in the layered screen tha t  occupies the region [rl, r2],  a re  determined from the solution 
of the boundary-value problem (1.1)-(1.3), (1.5), (1.6). 

We use the change of coordinates 

r = r l  + x (r2 -- r l )  (x E [0, 1]), (1.7) 

which maps the region of definition [rl, r2] onto the interval [0, 1]. We introduce the piecewise-constant 
function 

or ---- {C~j: X E [Xj,  27j+ 1 ), j = 1 , . . . , n } ,  xl  = 0, Xn+l = 1, (1.8) 

which characterizes the structure of the layered screen: the number, dimensions, and materials of the con- 
sti tuent layers. The  values of ~j  belong to the discrete finite set 

u = { 1 , 2 , . . . , k } ,  (1.9) 

which corresponds to  the given set of materials W. All characteristics of the materials from the set W are 
functions of the distribution a (x)  on the segment [0, 1]. 

Since the s t ructure  of the layered screen is determined by the function a(x)  and the thickness is 
determined by its dimensions r l  and r2, we consider the pair {a (x ) , r2}  as the control (without loss of 
generality, the inner radius r l  is assumed to be fixed), where a(x)  6 U (1.9) and 

0 < rl  < a ~< r2 ~< b (1.10) 

(a and b are the specified limits within which the outer radius r2 can be varied). 
The problem of the optimal design of a spherical screen is formulated as follows. From the piecewise- 

constant functions a(x )  with values of U and the parameters r2 in the range [a, b] that  satisfy inequality 
(1.10), we need to find a control {a(x),  r2} tha t  provides for a minimum of the weight functional 

r2 1 
P 

F0( , / = / x) (1.11) 
rl 0 

with the specified constraint on the wave energy 

Fl(a,  r2,vr, Crrr) = J (a ,  r2,vr, Crrr) - ~Jo <<. O. (1.12) 

Here J(a,  r2, vr, (rrr) is the time-averaged wave-energy flux transferred by the spherical wave through the 
surface r = r2 in the r axis, J0 is the average energy flux in the incident wave, and r 1 is the energy transmission 
factor of the screen [4], i.e., the fraction of the energy flux in the incident wave that  can pass into the 

region r > r2. 
Using the expression for the energy flux [5] and bearing (1.6) in mind, we write the functional 

J ( a ,  r2, vr, ar t)  in the form 

\g21 / 
0 0 

(the bar above the function denotes complex conjugation). The corresponding expression for the energy flux 
J0 in the incident wave takes the form 

oo 

0 0 

where bl(w) is the amplitude of the incident spherical wave potential. 
2. N e c e s s a r y  O p t i m a l i t y  C o n d i t i o n s .  To obtain the necessary optimality conditions in problem 

(1.1)-(1.12), it is necessary to express variations in the objective function (1.11) and constraint (1.12) in terms 
of variation in the control  {a(x) ,  r2}. To this end, we transform the boundary-value problem (1.1)-(1.3), (1.5), 
(1.6). 
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The conjugation conditions (1.3) and relation (1.7) allow one to introduce the phase variables 

Y(x ,w)  = (yl,Y2) t -- (Vr, O'rr) t 

that are continuous on the segment [0, 1] (the superscript "t" denotes transposition of the corresponding 
vector or matrix). 

In the new variables, the controlled system (1.1)-(1.3), (1.5), (1.6) becomes 

Y'(x ,  w) = A(a, r2, x, w)Y(x, w), (2.1) 

gllyl(O,w) + gl2Y2(O,w) = g13, g21Yl(1,w) + g22Y2(1,w) = O, 

where the prime denotes differentiation with respect to the x coordinate, the coefficients gij axe given by 
relations (1.5) and (1.6), and the components of the matrix A have the form 

iw 
a l l  ---- r \ 4  q a12 -~ - -  ( r 2  - -  r l ) ,  

] 44 
�9 [44  (3-4~-~" l r4(r2 rl). 

Let {a(x), r2} be an optimal control from the admissible set (1.9) and (1.10) that minimizes functional 
(1.11) and satisfies constraint (1.12). We consider the perturbed control {a*(x), r2 + 5r2} [6]: 

f v(x), x E D ,  v(x) eU, 
Ce* (X) = ~ re + 5r2 e [a, b], lbr:l < ~ (2.2) 

a(x), xCD, mes(D)<r 
(D C [0, 1] is a set of small measure and ~ > 0 is a small quantity). The variation (2.2) of the control 
{a(x), r2} generates the variations 5Fo and JF1 of functionals (1.11) and (1.12) (for brevity, the independent 
variables corresponding to the unperturbed control {c~(x), r2} are omitted): 

5F0 = / ( G ( a * , . . . )  - G(a,...)) dx + So 5r2; (2.3) 

D 

D 0 

Here M(a, r2, x, w, Y ,  ~)  = ~t (X, w)A(a, r2, x, w) Y(x,  w), 
1 /o 

So = ~ a(~, r2,x) dx, 
0 

(2.4) 

oo 1 

Sl-~/( /Ue(~-~2M(~176 Y , ~ ) ) d x  
o o 

+27r]y2(l'w)12ReCO-~-Cr2~g22))kOr2\ " ~1"21//-F Re(r w ) _  ~r2 \ ~ 2 1 / / 0  (g22)~}dw. 

For each fixed w, the vector of the conjugate variables @( x, w) = (~1, r t is determined from the solution of 
the boundary-value problem 

~/(X,W) = -At(ce, r2,x,w)~(x,w), g l 2 ~ l ( 0 ,  w )  - g l l ~ 2 ( 0 ,  w)  = 0,  
(2.5) 

g22~l(1,W) -- g21~Z2(1,W) = -47rr2g21~12(1,o))Re(g22/g21). 

We consider the extended functional 
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TABLE 1 

Material p, kg/m 3 ct, m/see et, m/see 

Spheroplastic 
Duralumin 
Titanium 
Steel 
Copper 
Lead 
Rubber 
Tin 
Glass 

650 
2800 
4600 
7800 
8930 

11340 
930 

7290 
2400 

2278 
6129 
6110 
6020 
4394 
1956 

72 
3188 
5292 

1279 
3087 
3143 
3218 
2163 
727 
17 

1606 
3055 

Q(c~,r2) = F o ( c ~ , r 2 ) + A l { F l ( c ~ , r 2 , Y ) + ~ 2 } + A 2 { a - r 2 + ~ 2 } + A 3 { r 2  - b + ~ 3  } (2.6) 

(Ai and ~ are Lagrange multipliers and penalty variables, respectively). Using expressions (2.3) and (2.4), 
we write the variation of functional (2.6) in the form 

3 
5Q = f {H(~,. .  .) - H(~*,. .  .)} dx + {So + A1S~ - Az + A3} hr2 + 2 ~-~ 5~Ai h~, (2.7) 

D i=l 

where 
o o  

H(c~, r2, x, Y ,  @) = -G((~, r2, z) - AI f Re (M(a ,  r2, x, ~, Y, # ) )  d~. (2.8) 

0 

Since the control {c~(x), r2} is optimal (minimizing), the condition 5Q ) 0 must  hold for every admis- 
sible control  {a* (x), r2 + 6r2 } (2.2). From expression (2.7), by virtue of the arbitrariness of the variations 6r2 

and 5~i, we obtain 

(2.9) So+AIS1-A2+A3=O; 

AIFI (a ,  r2, Y )  = O, AI /> 0; (2.10) 

i a  - r2)  = o ,  (r2 - b) = o ,  o ,  o .  (2 .11 )  

Since the small-measure set D can be closely arranged almost everywhere on the segment [0, 1], the condition 
of maximum of the Hamilton function g (2.8) for the argument a [6] must hold for almost all z E [0, 1] 

H ( a ,  r 2 , x , Y ,  q 2 ) =  max H ( a * , r 2 , x , Y , ~ 2 ) .  (2.12) 
a* (z)~U 

Thus,  the optimal control {~(x),  r2}, the corresponding optimal t rajectory g (x, ~) ,  and the vector of 
the conjugate variables @ (x,~o) must satisfy the boundary-value problems (2.1) and (2.5), relations (1.9), 
(1.10), (1.12), (2.10), and (2.11), and the optimality conditions (2.9) and (2.12). 

The  necessary optimality conditions obtained are used to develop an algorithm for the synthesis of a 

spherical screen [7]. 
3. E x a m p l e  o f  C a l c u l a t i o n .  The set W consists of nine materials, whose acoustic properties are 

listed in Table 1. 
A monochromatic spherical wave with a frequency of f -- 10 kHz (~ = 27r f )  is incident on the screen. 

The regions r < rl  and r > r2 are occupied by air: Pa = Pb = 1.29 kg/m 3, eta = Clb = 331 m/see, and 
cta = Ctb = 0. The inner radius of the screen rl  is assumed to be fixed and equal to 1 m, and the outer radius 
r2 varies from 1.014 to 1.015 m. The  transmission factor of the screen is 77 = 10 -8. The  screen is divided 
across the thickness into 50 equal parts,  which model small-measure sets on which the control is varied. 
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Calculations were performed with different initial approximations, which were chosen from numer- 
ical experiments. The result was a three-layer screen with outer radius r2 = 1.014687 m and mass 
F* = 1762.938 kg consisting of lead layers with thicknesses of 1-1.001175 and 1.012925-1.014687 m and 
a copper layer with a thickness of 1.001175-1.012925 m. 

The lightest homogeneous screen that  satisfies constraints (1.10) and (1.12) is a lead screen with outer 
radius r2 = 1.014 m and mass F. = 2023.098 kg. 

The relative gain in mass for the optimal screen compared to the given homogeneous screen is (1 - 
F*/F.). 100% = 12.9%. 

This example shows that the optimal structure includes materials of the highest density. Therefore, 
the gain in mass can be small. If the cost rather than the mass of the constituent materials is chosen as the 
objective function (1.13), the optimal structure can also consist of other materials. 

This work was supported by the Russian Foundation for Fundamental Research (Grant Nos. 99-01- 
00556). 
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